Author: Tim K. Garrison, P.E. is the President of ConstructionCalc, Inc., Mt. Vernon, WA

ConstructionCalc creates and sells easy to use structural software power tools for contractors and design professionals. We also teach structural concepts and design fundamentals. Please visit our website: www.constructioncalc.com

Contributors:
Ivan Kaliban, P.E.
Robert MacKay
Cynthia Garrison

DISCLAIMER

Information contained in this work has been obtained by the author from sources believed to be reliable. However, the author does not guarantee the accuracy or completeness of any information herein. Further, the author shall not be responsible for any error, omission, or damages arising out of use of the information contained herein. This work is provided with the understanding that the author is supplying information but is not attempting to render engineering or other professional services. If such services are required, the assistance of an appropriate professional should be sought.

COPYRIGHT

This work is protected under all applicable copyright laws in effect at the time of its creation. All rights are reserved. No part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system without the prior written permission of the author.
TABLE OF CONTENTS

Chapter 1. Loads, Factor or Safety, and Engineering Law
- Introduction, Causes of Failure 1-1 – 1-2
- Dead Load, Live Loads 1-2
- Snow Loads 1-2 – 1-4
- Wind Loads, Earthquake Loads 1-4
- Load Combinations and Design 1-4 – 1-5
- Factor of Safety 1-5 – 1-6
- The Law Pertaining to Engineers 1-6 – 1-8

Chapter 2. Beams and Other Bending Members
- Types of Bending Members 2-1
- Shear Stress, Bending Stress 2-2
- Moments (or ‘Bending Moments’) 2-2 – 2-6
- Cutting or Drilling Bending Members 2-6 – 2-9
- Lateral Bracing 2-9
- Temporary Bracing 2-9
- Deflection 2-10
- Applied vs. Allowable Stresses 2-10 – 2-11
- Moment of Inertia (MOI) 2-11

Chapter 3. Compression Members and Tension Members
- Types of Compression Members 3-1
- Applied Stresses 3-1 – 3-2
- Allowable Stresses 3-2
- Unbraced Length 3-2 – 3-4
- Moments in Compression Members: Eccentricity & End Fixity 3-4 – 3-6
- Tension Members, Trusses, Cables, Tension Rods 3-6 – 3-7

Chapter 4. Wood as a Structural Material
- Allowable Stresses 4-1 – 4-2
- Moisture Resistance, Pressure Treatment 4-2 – 4-3
- Old Wood 4-3
- Glue Laminated Lumber (Glu Lams) 4-4 – 4-5
- PSL’s, LVL’s, LSL’s, and Wood I-Joist 4-5 – 4-7
- Connections: Nails 4-8 – 4-10
- Connections: Bolts 4-10 – 4-12

Chapter 5. Steel as a Structural Material
- Steel vs. Wood, Nomenclature 5-1
- Yield Stress and Ultimate Strength 5-1 – 5-2
- Grades and Modulus of Elasticity of Steel 5-2
- Types of Steels 5-2 – 5-4
- Shapes (Wide Flange, Tubes, Pipe, etc.) 5-4 – 5-9
- Ductility and Brittle Fracture 5-9 – 5-10
- Bolts and Bolting 5-10 – 5-13
- Welding 5-13 – 5-19

Chapter 6. Concrete as a Structural Material
- Cement (vs. Concrete) 6-1
- Types of Cement 6-1 – 6-2
- Mortar and Grout 6-2
- Hydration 6-2 – 6-3
- Aggregates 6-3 – 6-4
Basic Structural Concepts (For the Non-Engineer)

Water – Cement Ratio 6-5
Slump 6-5
Admixtures (air-entrainment, accelerators, retarders, etc.) 6-5 – 6-9
Shrinkage, Creep, Temperature Effects 6-9
Stresses in Concrete 6-9 – 6-10
Rebar and Welded Wire Fabric 6-11 – 6-12
Minimum Reinforcement, ‘Temperature Steel’ 6-12 – 6-13
Development of Reinforcement 6-14 – 6-15
Splicing, Hoops, Ties 6-15 – 6-17
Minimum Bend Diameters 6-17
Surface Condition of Rebar 6-17
Minimum Concrete Cover over Reinforcement 6-17 – 6-18
Placing Concrete 6-18
Slabs on Grade 6-18 – 6-21
Joints in Slabs (construction, contraction, and isolation) 6-20 – 6-21
Hot and Cold Weather Concreting 6-21 – 6-23
Marine Applications 6-23 – 6-24

Chapter 7. Wind and Seismic (Lateral Load) Design
Introduction to Distribution of Lateral Loads 7-1 – 7-2
Wind Design 7-2 – 7-4
Wind Exposure 7-3
Earthquake Design 7-4 – 7-8
Seismic Zones 7-5
Soils (seismic effects on). Liquefaction 7-5 – 7-6
Building Irregularities 7-6 – 7-8
Shear Walls 7-8 – 7-14
Aspect Ratio of Wood Diaphragms 7-10
Prescriptive Braced Shear Walls 7-11 – 7-13
Lateral Load Resisting Frames 7-14 – 7-15
Horizontal Diaphragms 7-15 – 7-16
Load Path, Collectors and Drag Struts 7-16 – 7-18
Uplift and Holdowns 7-18 – 7-19
Distribution of Lateral Loads 7-19 – 7-21
Story Drift 7-21 – 7-22
Redundancy 7-22 – 7-23

Chapter 8. Foundations and Retaining Walls
Soils 8-1 – 8-3
Liquefaction 8-2
Footings 8-3 – 8-4
Forces on Retaining Walls 8-4 – 8-5
Cantilever Retaining Walls 8-5 – 8-7
Braced or Propped Retaining Walls 8-7 – 8-10
Gravity Retaining Walls 8-10 – 8-12
Reinforced Earth Retaining Walls 8-12
Cantilevered Pole Type Retaining Walls 8-12
Tie-Back or Bulkhead Retaining Walls 8-13
REFERENCES:

